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Abstract. The Klein-Gordon equation without dispersion, and with quadratic and cubic 
non-linearities, has been studied in one and higher dimensions. Algebraic solitary wave 
solutions in all cases, as well as higher-order modes in higher dimensions (similar to 
non-linear optics) have been shown to exist corresponding to specific initial values. While 
in the one-dimensional case, arbitrary initial values yield periodic solutions, asymptotically 
stable solutions are shown to exist in the higher-dimensional case. For both one- and 
higher-dimensional cases, solutions tending to zero with distance are shown to be achieved 
for other initial conditions by incorporating a small amount of ‘saturating’ fourth-order 
non-linearity. Finally, it is shown how a general Klein-Gordon equation with dispersion 
and a forcing term may be reduced to the equation discussed in the paper. 

1. Introduction 

The Klein-Gordon equation plays a fundamental role as a model equation in non-linear 
field theories (Bjorken and Drell 1964, Hobart 1963), in lattice dynamics (Scott 1969, 
Bishop and Schneider 1978) and in non-linear optics (Chiao et a1 1964, Haus 1966). 
Stationary baseband solutions of the equation come about as a balance between the 
non-linearity and the dispersion and thus represent solitary wave solutions to the 
system. While analytic solutions in powers of sech functions can be determined in 
one dimension (Korpel 1979), radially symmetric higher-dimensional solutions have 
no simple analytic form; these solutions are thus obtained using numerical methods 
(Chiao et a1 1964, Haus 1966) or by a variational technique (Small 1972). Envelope 
solutions can also be determined by first showing that the PDE for the envelope satisfies 
the same stationary baseband Klein-Gordon equation with suitably modified 
coefficients (Korpel and Banerjee 1984). 

Several non-linear generalisations of the Klein-Gordon equation also have exact 
analytic solutions, which in special cases are solitary waves (Burt and Reid 1976, Burt 
1978, 1980). In most cases the solutions are in terms of exponentials; however, in at 
least one special case, algebraic-type solitary waves have been reported (Burt 1978). 
Klein-Gordon equations having a constant forcing term and damping have been studied 
by La1 (1985, 1986) and envelope Klein-Gordon systems in one and higher dimensions 
have been analysed on the basis of similarity transformations (Tajiri 1984a) and a 
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reduction to the second PainlevC equation (Tajiri 1984b) with a view to determining 
N-soliton solutions (Tajiri 1 9 8 4 ~ ) .  

As noted by Burt (1980), solutions of certain non-linear generalisations of the 
Klein-Gordon equation exhibit soliton properties even when the dispersion vanishes. 
No rigorous physical explanation for this seems to be available, though intuitively 
speaking we might argue that, for instance, a quadratic non-linearity can balance a 
cubic non-linearity in the following way. Consider, for instance, the kinematic wave 
equation of the form (Whitham 1974) 

a ~ / a t + ~ ~ ( l + ~ ~ ~ + ~ ~ ~ ' ) a ~ / a x = o  (1) 

where $ represents the wavefunction, co is the (linear) phase velocity and P 2 ,  /I3 denote 
the quadratic and cubic non-linearity coefficients. Consider furthermore, the case 
where > 0, p3 < 0 and where + at t = 0 is a baseband signal greater than zero. Then, 
with time, the leading edge of the signal steepens while the trailing edge smoothens 
under the action of the quadratic non-linearity alone, while the reverse occurs under 
the effect of the cubic non-linearity. The combined effect can be visualised as a 
balancing process whereby the signal may finally evolve into a shape which remains 
unchanged during propagation. 

The organisation of this paper is as follows. In § 2, we derive (algebraic) solitary 
wave solutions of the non-linear Klein-Gordon equation (having quadratic and cubic 
non-linearities) without the dispersion term, in one and higher dimensions. Now 
conventional Klein-Gordon systems (i.e. with dispersion) also exhibit periodic sol- 
utions expressible in terms of elliptic integrals. We have found that the non-linear 
Klein-Gordon equation without dispersion and in one dimension also exhibits a similar 
property, for arbitrary initial values (except the initial value corresponding to the 
aperiodic solution and trivial cases). This is intensively discussed in § 3. Examples 
corresponding to typical initial values are also provided and plotted. Furthermore, 
non-linear optics solutions (Haus 1966) also predict the existence of higher-order 
modes that decay to zero for higher-dimensional propagation. In the case of the 
Klein-Gordon equation under consideration, we have checked that this is true, by 
employing a numerical scheme. For arbitrary initial conditions not corresponding to 
any one of these modes, the solutions no longer decay to zero (as in the non-linear 
optics case), however, we observe decaying oscillations with decreasing periods that 
tend to a limiting value. This is presented in § 4. Finally, in § 5, we show how a 
Klein-Gordon equation having dispersion as well as the quadratic and cubic non- 
linearities and a constant forcing term of the type mentioned by La1 (1985, 1986) can 
be reduced to the Klein-Gordon equation we consider, and thus establish aperiodic 
(algebraic) and periodic solutions to more general systems. 

2. Algebraic solitary wave solutions of the non-linear Klein-Gordon equation without 
dispersion 

We will consider, in this paper, the non-linear Klein-Gordon equation without disper- 
sion of the form 

a 2 * / a t 2 - c ~ V 2 * = A , * ' + A , * 3  $ A + ( x ,  y ,  Z, t )  V 2 ~ a 2 / a x 2 + a 2 / d y 2 + a 2 / a z 2  (2) 

where co represents the (linear) phase velocity and where A*,  A,  denote the quadratic 
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and cubic non-linearity coefficients. In our quest for the solitary wave solution, we 
now introduce a travelling frame of reference 

( = X - V t  (3) 

where v is the anticipated velocity of the solitary wave. Substituting (3 )  in ( 2 )  and 
defining 

- 

1 1 

CO CO 
l = - z  T = - Y  s' 1 

[=--==. 
J c ~  - U' 

we obtain 

a'+ a'+ a'$ - - 
a t 2  a T 2  a i 2  -+-+-AV2+=-A 2$2 - A3G3 

(4) 

- A  - + = +(e, 7 7 9 0  = 44x7 Y ,  2, t ) .  

Assuming radial symmetry (if we are working in higher dimensions), (5) simplifies to 

where n' = 0, 1 , 2  in the one-dimensional case, circular and spherical symmetries respec- 
tively. Finally, normalisation using 

reduces (6) to 

d 2 9  n ' d 9  -+- - = 9 2  - 9 3  
d R 2  R d R  

9 A 9( R).  

Lemma 2.1. Rational algebraic solutions to (8) finite at R = 0 and CO are of the form 

a 
9 ( R )  =- 

1 + bR2 
a, bER. ( 9 )  

Proof: Changing R to -R in (8) leaves the equation invariant, which means q ( - R )  = 
9 ( R ) .  Assume, therefore, a rational algebraic form for 9 as 
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The superscripts on P and Q have merely been introduced for differentiating them 
from the original P and Q defined in ( 1 1 ) ;  the subscripts are important and denote 
the orders of the polynomials. Similarly, 

Substituting (12)-(15) in (8) and comparing the orders of the numerator polynomials, 

6n+4m - 2  = 6 n + 2 m  

implies that 

m = l  (16) 

i.e. the order of the denominator in (10) should be higher than the order of the 
numerator by 2. Note that this also ensures that 9 is finite ( = 0) as R + W .  

Furthermore, inspection of (10) reveals that ( n  + 1 )  + ( n  + m) unknown coefficients 
have to be solved for, since bo can be set equal to 1 without loss of generality. With 
m = 1, this means that the number of unknowns is 2n + 2. The total number of available 
equations is (6n + 2 ) / 2 +  1 = 3n +2 ,  since 6n + 2  is the order of the numerator poly- 
nomials. In order to have non-trivial solutions, we must have 

2 n + 2 3 3 n + 2  

implying 

n = O .  

Finally, putting a, = a ;  b,  = b, equation (9) follows. 

Substituting (9) in (8), and evaluating a and b, q ( R )  can be expressed as 

As a check, for n' = 2 (spherically symmetric case), (17) yields the same solution as in 
Burt (1978). Also, the denormalised solution in terms of r can be written as 

Heuristically speaking, (18 )  makes sense since A2 < 0, A ,  > 0 corresponds to non- 
linearities having opposite signs and can create the balance, referred to earlier, for 
positive baseband signals. It may be readily argued that when the non-linearities are 
of the same sign, the signal has to be negative to create the same balance. The solitary 
wave moves with a velocity U < co. The velocity may be related to the 'width' of the 
solitary wave in (18) through (4)-(6). 
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3. Periodic solutions of the non-linear Klein-Gordon equation without dispersion in 
one dimension 

We will use, as our starting point, equation (8), which is a non-linear ODE in Y, with 
t i = O  

d2 'P /dR2=Y2- 'P3 .  (19) 

Clearly, 'P = 0 and 1 represent trivial solutions. Multiplying both sides of (19) by 
dY/dR and integrating with respect to R, we obtain 

(dVr/dR)2=$l"P-iY4+ K 

where K is an integration constant. 
Assume, now, that at R = 0, Y = Y o  and d'P/dR = 0; this gives 

K =Lq4-?Y3 
2 0 3 0 .  

In order to reduce ( 2 0 )  to a tractable integral, we set 

* = @ + C Y  

to obtain 

(d'@/dR)* = (:a3 -+a4+ K )  + ( 2 a 2  - 2 a 3 ) ' @ +  ( 2 a  -3a2)'@'+  CY)'@^ -$'@4. 

We then set the constant term equal to zero, yielding 
fa3  -4a4+ K = 0 

or, using (21), 

: ( C Y  - Yo)( CY + Y o a  + 9:) = i( CY -Yo)( CY3 + *2Y0 + CY'P; + 9:). 

a = a1 = ' P o .  

c y 3  + (yo - $ ) a 2 +  

A value of a satisfying (25) is 

To find other (real) value(s), we have to solve the cubic equation 

-:)Y~cY + ( Y ~ - $ ) Y ~  = 0. 

Two cases need to be considered: (a)  Yo = $ and (b) 'Po # $. These are discussed 
separately in the two following subsections. As we shall subsequently show, case (a)  
yields the aperiodic solution discussed in 9 2 ;  however, we include the discussion for 
the sake of completeness. 

3.1. Case (a): Po = 

The possible values of CY are 

C Y l  = $  from ( 2 6 )  (28) 

a,=O from ( 2 7 ) .  (29) 

and 

We will discuss first the case of a = a 2 = 0  for which 'P =\ir (from ( 2 2 ) ) .  Also, from 
( 2 1 ) ,  K = O ;  hence, from ( 2 3 ) ,  

(dY/dR)2=$P3- i 'P4  (30) 
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or, upon integration, 

=  constant. constant. 
Employing the condition that Y( R = 0 )  = Yo = 4, the value of the constant becomes 
zero; hence, from (31), we obtain 

* ( R )  =;(1+$R2)-'  (32) 

in agreement with (17)  for n' = 0. 
For a = a ,  = Yo = :, K = 0 once again, and we recover (32). 
Hence, for both values of a, we obtain the same aperiodic solution. 

3.2. Case (b): 'Po f $ 
In this case, there are four possible values of a to examine, one given by (26) and the 
other three given by the roots of the cubic equation (27). In what follows, we will go 
through a detailed analysis of this case to expose in depth the relationships between 
different possible solutions. 

Lemma 3.1. Of the three roots of (27), one is real and the other two are complex 
conjugates. 

Proof: In (27), setting 

a = y - ; ( Y o - $ )  (33) 

(34) 

q =  - [ 3 Y 0 + ~ ] ( Y 0 - ~ )  (35)  

(36) 
r = - [ 2 7 ~ ~ + 3 P , , + $ ] ( * ~ - ; ) .  20 

to eliminate the quadratic power of the unknown, we get, after some algebra, 
3 y - q y - r = O  

with 

and 

Now, following Pipes and Harvill (1970), (34)  will have a real root and two complex 
(conjugate) roots if 

27r2>4q3.  (37) 

Y;+:Yo+;>O (38) 

But (37) with (35)  and (36)  may readily reduce to 

which is always true, and the lemma is proved. 

From the results of the above lemma, it suffices to consider the two real roots of 
a( = for each value of Yo. Now, from (23), without the constant term, we have 

Putting 

+= l/(b 
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(39) becomes 

where 

a =2(Y2-2(Y3 

c = j - 2 ( Y  

b = 2 ( ~ - 3 ( ~ '  

d =  -1 
2 ,  

The solution to 4, and hence to @ and Y, can be expressed in terms of Jacobian 
elliptic functions (Abramowitz and Stegun 1970). Hence, \I' is periodic in nature. With 
dY(O)/dR = 0, if V,,> 1 ( < l ) ,  it must correspond to the maximum (minimum) value 
of Y, This is obvious if we examine (19). We will call the maximum value Y and 
the minimum value Ym with Yext denoting either of the two. 

We may see by comparison that (24) for (Y and (21) for YexI are the same. Hence 
both YM and Ym satisfy (24) with (Y replaced by YM,,,,. Furthermore, since we have 
shown that (24) has two possible real solutions, they must be YM and Ym. Thus if 
YM(,,,) is the given initial value, 9m,M) will be given by the solution to (27). 

Lemma 3.2. If 1 < YM <$, then 0 < Y,,, < 1 ;  and if YM > $, then Y,,, < 0. 

ProoJ: O n  the basis of the argument preceding the lemma, if the initial value is Y M ,  
the equation satisfied by Ym is 

F ( 9 m )  ( \ U M - $ ) * f n +  (YM-$)YMYm+ (YM-$)YL =o.  (43) 

If YM <$, putting Y, = 0 in the expression for p(Y,,,) yields F(0) < 0. Also, putting 
Ym = 1 in p(Y,,,) gives 

p'( 1 )  = (\I'M - 1)[(YM +f)'+$] 

> O  

since YM > 1 .  Hence, 0 < Y,,, < 1 .  

Similarly, if YM > !, p(0) > 0, and p'( -00) = -CO; hence Y, < 0. 

Lemma 3.3. The polynomial p ( 4 )  defined in (41) has only one real root 

P =1l (Yext - (~ )  

where a=YM(,,,) if YexI=Y,,,(M) 

ProoJ From (41), 

(44) 
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a 3  
L j =  - ( a - $ )  

(2a3 - 2a2)3 

( Y 3  

( 2 a 3  -2a2 ) '  
-$) (47) 

upon using (42). As in lemma 3.1, p ( 4 )  will have one real and two complex (conjugate) 
roots if 

27 i2  > 4Lj3 (48) 

i.e. if 

4 ( a  - 1 ) 2 [ ( a + y + f ] > o  (49) 

which is always true, and  hence p ( 4 )  has only one real root. 
To show that the real root is /3 = l / (qex , -  a ) ,  we substitute in (41) to get 

P ( P )  = ~ [ 1 I ( q e x t - a ) l  

= [ a + ~ ( q e x t - a ) + c ( q e ~ t - a ) 2 + d ( q e x t - a ) 3 ] / ( q e ~ t - a ) 3 .  ( 5 0 )  

Now, in (25), if 'Po = qext = qM(q,,,), then for a # a , ,  (27) should give the other value 
of a (  =qm(qM)). From (50 ) ,  the term in square brackets can be re-expressed, using 
(42) as: 

(2a2-2a3)  + (2a - 3 a 2 ) ( q e x t -  a ) +  ( : - 2 4 ( q e x t  - .)* -;(vext - a ) 3  

- - - f  [ L y 3  + ( q e x t - : ) a * + ( q e x t - : ) q e x t a  + ( q e x t - : ) q : x t I  

= O  

using (27), and  the lemma is proved. 

At this point, let us briefly summarise the results proved thus far for the benefit of 
readers. In looking for solutions to the ODE in (19), we have shown that besides the 
trivial solutions, algebraic solutions can be obtained for an initial condition 'Po = $. 
For Vo#$,  the solutions are periodic in nature and expressible in terms of elliptic 
integrals. If 1 < Y o  < i, it corresponds to the maximum value of the periodic function, 
with the minimum value lying between 0 and 1. If Po > $, it is once again the maximum 
value with the minimum being less than 0. Similarly, for qo< 1, it corresponds to the 
minimum value, with the maximum value lying between 1 and if q o > O ,  and with 
the maximum value greater than ! if Yo<O. Given a certain initial condition, the 
corresponding minimum or maximum can be determined through solving (43) which, 
in fact, has the same structure as (27). Furthermore, corresponding to a given initial 
condition, there can be two possible values for a, one equal to the initial condition 
and  the other given by (27), which is equal to the other extremum for the given initial 
condition. Finally, we have shown that the root of the polynomial p (  4)  in (41), which 
is pertinent in defining the properties of the periodic solution, is given by (44). 

The summary above exposes four different cases to be considered. Corresponding 
to a given initial condition qo = qeX,( = PM(m,), there are two values of a ;  a ,  > 1 and  
a 2 <  1. Suppose the initial condition is V M .  The two values of a are qM and q,,, 
corresponding to the given qM. If, next, we choose the initial condition as the q,,, 
corresponding to the chosen before, we will, once again, get two values of a, which 
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are the same as before. Our objective now will be to derive, in general, the relationships 
between these four solutions. To achieve this, we will consider the two values of a, 
a, PM( > 1) and a2 4 qm( < 1) irrespective of whether the initial condition is qM or Ym. 

For a = a , ( > 1 )  we obtain, from (41), 

where 

where a, ,  b, ,  c, and d ,  are defined by (42) with a = a ,  =qM, and RI  denotes an 
integration constant which will later be determined from the initial condition. Now 
(51) can be re-expressed as (Abramowitz and Stegun 1970) 

= F(@1/90”- 6,)  

= (1 -cos2 6, sin’ d e  (55) 

where 

A: = [ i ’ I ( P I ) l ” 2  (56) 

cos’ a i  1 - m, = i+$iy(pi)/[  bi(pi)]”2. (57) 

and the parameter 

In (56) and (57), the primes denote differentiation with respect to 4. From (55), 

= c n [ f i A , ( R - R , ) ] .  (58) 

Then, using the transformations (40) and (22), and the definition of a, in (42a), 

l+cn[(2a:-2a:)”’Al(R - R I ) ]  
( p ,  -A:) + ( p ,  +A:) cn[(2a: - 2 a ~ ) ” * A 1 (  R - R,)]’ 

q , ( R )  = a ,  + 

The period of the cn function, and hence of q, is given as 

4 K ( 1 - m i )  
A ,  = 

(2~~:-2a:A,)’” 

(59) 

where 
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Similarly, for a = a2 ( < I )  we obtain, from (41), 

where 

using (41) 

where a 2 ,  b 2 ,  c2 and d2 are defined by (42) with cz = a2=Tm,  and R2 denotes an 
integration constant. The final solution for “ ( R )  in this case becomes (Abramowitz 
and Stegun 1970): 

1 + cn[ (2a: - 2a:) ’ / ’A2(  R - R 2 ) ]  
( p 2 +  A:)+ ( P 2 -  A:) cn[(2a:-2a:)’”h2(R - R , ) ]  

9 * ( R )  = a,+ 

with R (  . )  defined in (61). 

and A, we will state and prove the following lemmas. 
To establish the relationships between (59) and (65) as well as between the A, m 

Lemma 3.4. 

(2a - 2a : ) ‘ l2A I = (2a - ~ C K  i) ‘ l 2 A  2 .  

Roo$ Using (56) we obtain 

(2a:-2a:)’/2A, = { 2 9 h  -2YL}’/4 
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We now need only 

and 

NI1 = N** 

which are easy to check using (43) .  

(73)  

Lemma 3.5. 

l - m , = m , .  (74)  

Proof: Proving (74) is equivalent to showing (see (57) and (67))  that 

K ( P J  - Z ( P J  
( i X P d ) I ’ *  - - (p’s(Pz))1’2* 

Now, after some algebra, 

and 

(75) 

In expressions (76) and (77), the denominators are equal (using (72) and (73)) and 
the numerators are equal too (by virtue of (43) )  and the lemma is proved. 

Lemma 3.6. 

AI = A*. (78)  

This follows directly from (69), (74)  and the definition for in (61) .  

We now proceed to impose initial conditions on the solutions (59) and (65) to find 
the constants R I  and R2 and thus construct the final solutions. 

From (59) ,  setting the initial condition as ‘PM makes 

(2a : -2a : )1 ’2A1RL=2R(1-ml )  [ = m m 2 1 1  (79)  

so that the corresponding solution for Y l ( R ) ,  which we shall call Y I M ( R ) ,  is 

If we set the initial condition in (59)  as Ym, it is readily verified that R I  = 0, for 
the RHS of (59) becomes equal to Y M +  l /P1  = Y, (using (52)), which is the LHS.  The 
corresponding solution, which we shall call ‘PI,( R) ,  is: 
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It is easy to see that there is a half-period shift ( = 2 x ( l  - m l ) )  between 'PIM and 

Similarly, starting from (65) and  setting the initial conditions as 'PM and 'Pm gives 
'PI,,,, as is to be expected. 

and 

respectively. Once again, there is a half-period shift (= 2 x  ( m2)  = 2x (1 - m l ) )  between 
the two solutions. 

Finally, we have to establish the relationships between 'PIM and qzM and between 
'P,,,, and 'P2m. We will deduce the first, the second follows along similar lines. First, 
we rewrite (80) and  (82) as follows: 

where 

Lemma 3.7. We make the three propositions that: 

Proof: Note that, from (70) and (71), 

A:=(Nl*INll)'~2P2 

and 

A: = - (N22/ N21)"*PI. 

On using (72) and (731, it follows that 

A:A:= -plp2. (92) 
Now using the definitions of P I  and Pz (from ( 6 3 ) )  equations (87)-(89) all reduce to 
(92) and the lemma is proved. 
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On the basis of the above lemma, we conclude that the solutions ' P i M ( R )  and ' P > M ( R )  
are identical to each other. In a similar way, it follows that q l m ( R )  = q Z m ( R ) .  

This means that corresponding to a given initial condition, the final solution is the 
same, irrespective of which value of CY we choose. Also, if a second initial condition 
equal to the other extremum is specified, the solution has a half-period shift with 
respect to the first solution. 

We will now illustrate the theory advanced thus far by means of some examples. 
(i)  9,, = 2; W(0) = 0. 

Remark that since q0>$, this corresponds to the maximum value PM where the 
minimum value is expected to be negative. For this case, the two values of CY are 
CY,  = 2.0 and o2 ( = qm) = -1.270. The parameter (1 - m,) equals 0.571. The period, 
calculated analytically, becomes equal to 5.01 5. The analytic solution is 

1 +4.947 cn( 1.530 R )  
3.041 -0.067 cn( 1.530 R)'  y I M ( R ) = q 2 M ( R )  = (93) 

Equation (93) was plotted by computer by employing tables of cn functions (Fettis 
and C a s h  1965) and suitable polynomial interpolations to take care of the values not 
listed. Results are shown in figure l (a )  and agree remarkably well with the results 
from numerical solutions of (19) for the same initial conditions. Changing the initial 
condition to q0 = 9, produces an analytic solution which when plotted (but not shown 

3j (nl 

-2,- 
0 10 20 M 

R 
20 30 

OL 
lo  R 

0 

I 
I 

1.5: 15. 

I 
- 0 5 L  - 0 5 1  

0 10 20 30 0 20 M 
lo R R 

Figure 1. Plots of analytic solutions of equation (19) with initial conditions Y ( R  = 0) = ( a )  
2, ( b )  1.2, ( c )  $ and Y ' ( R  = O ) = O ,  and ( d )  plot of numerical solution of equation (19) 
modified by a fourth-order non-linearity having initial conditions Y ( R  = 0) = 1.35, W ( R  = 
0) = 0 with A, = 0.01 1 44. 
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here) depicts the half-period shift with respect to the plot in figure l ( a ) .  Once again, 
this agrees remarkably well with results from numerical solutions of (19). 

Since 1 <Yo<!, this corresponds, once again, to the maximum value YM, but where 
the minimum value is between 0 and 1. The two values of a equal 1.2 and 0.723. The 
parameter (1 - m,) equals 0.0035, and the period is 6.794. The analytic solution is 
plotted in figure l (b )  and once again exhibits the same properties as discussed for 
example (i). 

For comparison, a plot of the algebraic solution, corresponding to Yo=!  and 
Y’(0) = 0 is given in figure 1( c ) .  

In passing, it may be mentioned that for initial conditions slightly different from 
:, the solution to (19) may be made to tend to zero as R tends to infinity by incorporating 
a small amount of ‘saturating’ fourth-order non-linearity. This is illustrated in figure 
l ( d )  by numerically solving the ODE for Yo=  1.35 and A4=0.011 44, where A4 is the 
coefficient of the Y4 term which now needs to be added to the RHS of (19). 

(i i)  Yo = 1.2; Y’(0) = 0. 

4. Higher-order modes-numerical solutions 

It is clear from the discussion in the last section that for n”=O,  (18) has only one 
solution (or mode) that tends to zero as R tends to infinity. The value of this function 
at R = 0 is :; for all other initial values the solutions are periodic in nature. 

However, for ti = 1 and 2 corresponding to circularly and spherically symmetric 
solutions, respectively, we know from non-linear optics (where the RHS of (8) is Y -Y3) 
(Haus 1966) that there exist higher-order modes for which the solutions go to zero as 
R tends to infinity for a discrete set of initial conditions. For the non-linear optics 
case, these solutions can be obtained through numerical solution of the differential 
equation. Is the same true for (8) too? We have found the answer in the affirmative, 
as will be shown below. 

Numerical solutions to (8) for initial conditions (clo = 2, 3.1035 and 3.8530 and for 
n” = 1 are shown in figure 2(a).  These solutions, which may be characterised by mode 
numbers m = 0, 1 and 2, respectively, decay to zero as R tends to infinity. The curve 
for the initial condition equal to 2 corresponds to the algebraic solution, already 
discussed in 0 2. For other initial conditions, for instance, 2.02, the solution does not 
decay to zero; rather, it exhibits oscillations with decreasing amplitudes as shown in 
figure 2(b). The period of the oscillations starts out at approximately 8.4 and tends 
to decrease to a limiting value. This makes sense, since at the onset of oscillations, 
the peak amplitude is around 1.3, which may roughly be considered a perturbation 
around the steady state value of 1. In fact, a perturbation analysis of (8) with n” = 1 
yields the equation 

d2AV 1 dAY 
dR2 R dR 

-+- -+ AY = 0 (94) 

where AY = Y - 1. This is Bessel’s equation of order zero. As R tends to infinity, this 
solution should behave as cos( R - T / ~ ) / v %  (Pipes and Harvilll970) and hence should 
be periodic with a period 277. (In fact, setting an initial condition equal to 1.3 verifies 
this from numerical simulation.) We speculate, therefore, that for arbitrary initial 
conditions, the solutions should be asymptotically stable. 
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Figure 2. Numerical solutions of equation (8) for ti = 1. ( a )  Higher-order modes with 
mode numbers 0, 1 and 2 corresponding to initial conditions Y ( R  = 0 ) = 2 ,  3.1035 and 
3.8530, respectively, and YYR = 0) = 0. The modes have the characteristic property of 
tending to zero as R + 00. ( b )  With initial conditions Y ( R  = 0) = 2.02 and Y’(R = 0) = 0. 
( c )  Modified by a fourth-order non-linearity having initial conditions Y (  R = 0 )  = 2.02 and 
Y’( R = 0 )  = 0 with A, = 0.004 55. ( d )  Modified by a fourth-order non-linearity having 
initial conditions Y ( R  =0)=3.12 and Y’(R = O ) = O  with A,=0.0051. 

Similar to the n” = 0 case, solutions of (8), corresponding to initial conditions slightly 
different from the values yielding solutions that finally go to zero, may also be made 
to tend to zero as R tends to infinity by incorporating a small amount of ‘saturating’ 
fourth-order non-linearity in the system. This is illustrated in figure 2( c )  for To = 2.01 
and A4= 0.004 55 where A4 is the coefficient of the q4 term which now modifies (8). 
A plot for q,, = 3.12 and A4 = 0.0051 has also been added (see figure 2 ( d ) )  to illustrate 
the same for an initial condition close to that for the solution with mode number m = 1. 

5. Reduction of other Klein-Gordon systems to the Klein-Gordon equation without 
dispersion 

Consider a more general Klein-Gordon equation having a dispersion term, quadratic 
and cubic non-linearities, and modelling a system impressed by a constant force F 
(La1 1985, 1986): 

a 2 + / a t 2  - C;V’+ = A,+  +A,+’+ F. (95) 
Following exactly the same procedure employing in deriving (6) from ( 2 ) ,  we get, from 
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(95), the ODE 

d2$ i d $  -+--= -A ,$ -Az$2-A,$3-  F. 
dr2 r d r  

Setting 

$ = i j + E  

in (96) transforms it to 

,ij’ - A, &’ d2$ i’d$ - 
dr2 r d r  
- + - - = - A  

with 

A, = A* + 3EA3 

A, = A, 

provided 

F + CA, + C2Az + E3A3 = 0 

and 

A,+2EA2+3E2A3=0. 

Finally, normalisation using 

reduces (98) to 

d2Y i d *  -+- - = * 2  - q r 3  
d R 2  R d R  

(97) 

which is identical to (8). All the results derived in $ 5  2 ,3  and 4 can therefore be used. 
Let us take a moment to reflect on the conditions that made possible the reduction 

to the form in (8 ) .  Note that if we impose the requirement that E = 0, then F = 0 (from 
(101)) and A ,  = 0 (from (102)). Also, if F = 0, it follows that there exists a possibility 
for algebraic solitary waves in a Klein-Gordon system with dispersion, and with 
quadratic and cubic non-linearities if the non-linear parameters satisfy the condition 

A:/A3 = 4 A l .  (105) 
The algebraic solitary waves do not, however, decay to zero as R + CO, rather, to 

E =  -A2/2A,. (106) 
Finally, for a given constant force, algebraic solitary waves may exist, whether or not 
the system exhibits dispersion. 

6. Conclusion 

In conclusion, the non-linear Klein-Gordon equation without dispersion and with 
quadratic and cubic non-linearities has been studied in one and higher dimensions. 
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Algebraic solitary wave solutions have been deduced for the one-dimensional case, 
and for higher-dimensional cases exhibiting circular and spherical symmetry, corre- 
sponding to specific initial values in a moving frame of reference. For arbitrary initial 
values, it is shown that solutions are periodic in the one-dimensional case. In  the 
higher-dimensional case, different modes, depending on the initial values, have been 
shown to exist. Any other initial condition is conjectured to yield solutions that are 
asymptotically stable. For both one- and higher-dimensional cases, solutions tending 
to zero with distance are shown to be achieved for initial conditions, close to the 
special set of initial values that exhibit the property, by incorporating a small amount 
of ‘saturating’ fourth-order non-linearity in the system. Finally, it is shown how a 
fairly general Klein-Gordon equation having dispersion and a forcing term as well as 
quadratic and cubic non-linearities may be reduced to the system discussed in the paper. 
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